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Abstract. Recently, a proper bisimulation equivalence relation for ran-
dom process model has been defined in a model independent approach.
Model independence clarifies the difference between nondeterministic
and probabilistic actions in concurrency and makes the new equivalence
relation to be congruent. In this paper, we focus on the finite state ran-
domized CCS model and deepen the previous work in two aspects. First,
we show that the equivalence relation can be decided in polynomial time.
Second, we give a sound and complete axiomatization system for this
model. The algorithm and axiomatization system also have the merit of
model independency as they can be easily generalized to the randomized
extension of any finite state concurrent model.

1 Introduction

Probabilistic processes have been studied for many years as an important exten-
sion of classical concurrency theory. Representative work includes the probabilis-
tic extensions of CCS [9,14], the probabilistic CSP [20], the probabilistic ACP
[1], and the probabilistic asynchronous π calculus [15].

As being summarized in [8], there are mainly two kinds of channel random-
ness used in these works. One is generative models [9,17] which bind probabilistic
choice to external actions, and the other is reactive models [5,11,19] which inter-
leave nondeterministic choice with probabilistic distributions (i.e., probabilistic
choice). The former setup could lead to difficulties in the interleaving of process
operations such as composition and restriction. The latter one, however, forces
an alternation between nondeterministic choice and probabilistic distribution
which brings unnecessary complexity to the system. A different approach is pro-
posed to tackle these problems, by taking a fundamental separation between
nondeterministic interaction and probabilistic choice [8]. More specifically, the
only probabilistic choice (or random choice) allowed in this new setup is defined
as ⊕

i∈I

piτ.Ti (1)

where the size of the index set I is at least 2 and
∑

i∈I pi = 1. For any (non-
probabilistic) process model M, τ is an abstraction for its internal actions. As
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probabilistic choice only happens via τ , (1) ensures the probabilistic choice to
be independent of the settings of the original model M. Thus we can uniformly
extend M into its randomized version. In addition to the syntax conciseness,
using this extension the probabilistic model will have some elegant algebraic
properties. In [8], the author has proposed two examples (processes A,C) to
show that (1) helps to overcome the possible confusing caused by traditional
syntax, especially under process combinators such as summation, composition,
and restriction. At the same time, the corresponding branching bisimilarity rela-
tion is shown to be congruent.

Apart from the nice properties brought by this model independent approach,
there are still a few issues which require re-investigation, such as equivalence
checking and axiomatization. Equivalence checking is one of the important prob-
lems in the area of automatic verification. Given two processes E and F of a
model, equivalence checking decides whether E and F can be related by a specific
equivalence relation. There has been a lot of work on equivalence checking since
1980s [18]. At the same time, axiomatization aims at understanding a language
through a set of axioms and inference rules that help to reason about the prop-
erties of programs [5]. It is worthwhile to work out a complete axiomatization
system for the branching bisimilarity defined in [8].

In this paper we focus on these two problems for randomized model. As a case
study, we consider the randomized CCS (Milner’s Calculus of Communicating
Systems [21]) model. As CCS model is Turing complete the general equivalence
checking problem is undecidable, it is standard to consider the finite state sub-
model [10,22]. Studies on these problems can shed light on the study of other
probabilistic process models, such as probabilistic π et al.

The rest of the paper is structured as follows. Section 2 gives preliminary def-
initions, notational conventions, the random process model and the equivalence
congruence; Sect. 3 gives the polynomial equivalence checking algorithm; Sect. 4
axiomatizes the relation of Sect. 2 and shows the soundness and completeness of
the axiomatic system; Sect. 5 contains some concluding remarks.

2 Preliminary

Let Chan be the set of channels, ranged over by lowercase letters. The set of
nondeterministic actions is denoted as Actd = Chan∪{τ}, ranged over by small
Greek letters. The set of probabilistic actions is Actp = {qτ | 0 < q < 1}.
Act = Actd ∪ Actp. For a natural number k ∈ N, we use [k] to denote the set
{1, 2, . . . , k}.

2.1 Finite State Random Process Model

It is well known that Milner’s CCS [21] is Turing complete, which means that
RCCS (Randomized CCS) in [8] is also Turing complete as it is an extension of
CCS. In order to get any meaningful algorithmic results, as well as what is more
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suitable for modeling the reality, we will concentrate on the finite state fragment
of the full model, denoted as RCCSfs. The grammar of RCCSfs, is as follows:

T := X
∣∣∣

∑

i∈I

αi.Ti

∣∣∣ μX.T
∣∣∣

⊕

i∈I

piτ.Ti (2)

In (2), X is a variable.
∑

i∈I αi.Ti means nondeterministic choice term.⊕
i∈I piτ.Ti means probabilistic choice term. μX.T means fixpoint term. The

indexing set I is finite and
∑

i∈I pi = 1. We write 0 for the nondeterminis-
tic term

∑
i∈∅ αi.Ti in which ∅ is the empty set. A trailing 0 is often omitted.

Particularly, sometimes instead of the standard form T =
∑

i∈I αi.Ti we use
T = T ′ + α.T ′′ to specify one of the summand terms α.T ′′.

A process variable X that appears in
∑

i∈I αi.Ti or
⊕

i∈I piτ.Ti is guarded,
X appears in a.Ti for some visible action a is strongly guarded. We use fv(T )
to stand for the set of variables occurring free (i.e., not bound by μ) in T . A
term is a process if it contains no free variables. We will use X,Y,Z for process
variables and A,B,C,D,E, F,G,H,L for processes. The set of all RCCSfs pro-
cesses (terms resp.) will be represented by PRCCSfs

(TRCCSfs
resp.). Comparing

to the definition in [8], we drop the composition operation for its combination
with fixpoint operator could lead to processes with infinite state. A simple coun-
terexample is μX.(s + t|τ.X).

The transition semantics of RCCSfs is generated by the following labelled
transition rules, where λ ∈ Act:

X
X−→ 0

∑
i∈I αi.Ti

αi−→ Ti

⊕
i∈I piτ.Ti

piτ−−→ Ti

T{μX.T/X} λ−→ T ′

μX.T
λ−→ T ′

(3)

Follow the convention used in [8], for an equivalence relation E on PRCCSfs
,

we write AEB for (A,B) ∈ E . The notation PRCCSfs
/E stands for the set of

equivalence classes defined by E . The equivalence class containing A is denoted
by [A]E . For C ∈ PRCCSfs

/E we write A
l−→ C for the fact that A

l−→ A′ ∈ C for
some A′.

We use Tv to stand for terms that are actually a variable (the one in the
first rule). Terms that can immediately do a nondeterministic choice (as in the
second rule) are called nondeterministic terms, denoted as Td. Terms that can
immediately do a probabilistic action are called probabilistic terms, denoted as
Tp (as in the last rule). It is obvious that TRCCSfs

= Td ∪ Tp ∪ Tv.
For terms S and T , if S can be transformed into T via one or a sequence of

rules in (3), we say that S can reach T , or equivalently, T is reachable from S.
Given S ∈ PRCCSfs

, we use RS to stand for the set of process expressions
reachable from S. The following proposition justifies the finite state property of
the model defined in (2).

Proposition 1. Given S ∈ PRCCSfs
, RS is finite.
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The proposition can be proved by induction on the grammar depth which is
standard. We omit the details here.

2.2 Branching Bisimulation Congruence

Here we give the bisimulation relation for which we will study the equivalence
checking algorithm and axiomatization. For self-containment, we include relating
definitions in this section.

The collective silent transition is firstly introduce in [8]:
⊕

i∈I

piτ.Ti

∐
i∈I piτ−−−−−−→

∐

i∈I

Ti

Definition 1 (ε-tree [8]). Let A ∈ PRCCSfs
be a process and E be an equiva-

lence relation on PRCCSfs
An ε-tree tAE of A with regard to E is a labeled-tree

such that the following statements hold true.

– Every node of tAE is labeled by elements of [A]E . The root is labeled by A.
– The edges are labeled by elements of (0, 1].
– If an edge from a node B to a node B′ is labeled p for some p ∈ (0, 1), then

some collective silent transition B

∐
i∈[k] piτ−−−−−−→

∐
i∈[k] Bi exists such that for

every i ∈ [k], there exists an edge from B to Bi labeled pi, and B1, . . . , Bk are
the only children of B.

– If an edge from a node B to a node B′ is labeled 1, then B
τ−→ B′ and B′ is

the only child of B.

Intuitively epsilon-tree is a random version of a sequence of state-preserving
internal actions. Sometimes we will use t instead of tAE for simplicity when A and
E are unstressed in the context.

A branch in an ε-tree t is either a finite path going from the root to a leaf
or an infinite path. The length |π| of a branch π is the number of edges in π if
π is finite; it is ω otherwise. For i ≤ |π| let π(i) be the label of the i-th edge.
The probability P(π) of a finite branch π is

∏
i≤|π| π(i). A branch of length zero

is a single node, and its probability is 1. The probability of an infinite path
A

p1−→ p2−→ . . .
pk−→ . . . is limk→∞

∏
i≤k pi.

Given an ε-tree t, the probability of the finite branches of t is defined by
P

f (t) = limk→∞ P
k(t), where

P
k(t) =

∑
{P(π) | π is a finite branch in t such that |π| ≤ k}.

An ε-tree tAE is regular if Pf (tAE ) = 1.

Definition 2 (l-transition [8]). For l ∈ Actd and B ∈ PRCCSfs
/E, suppose

l �= τ ∨ B �= [A]E . An l-transition from A to B with regard to E consists of a
regular ε-tree tAE of A with regard to E and a transition L

l−→ L′ ∈ B for every

leaf L of tAE . We will write A �E
l−→ B if there is an l-transition from A to B

with regard to E.
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Intuitively l-transition characterizes that after some state-preserving silent
transitions, an l-action is performed and the resulting processes should be in the
same equivalence class.

Suppose L

∐
i∈[k] piτ−−−−−−→

∐
i∈[k] Li such that ∃i ∈ [k], Li ∈ B �= [L]E . We define

P(L
∐

i∈[k] piτ−−−−−−→ B) =
∑

{pi|L
piτ−−→ Li ∈ B ∧ i ∈ [k]}

Define the weighted probability

PE(L
∐

i∈[k] piτ−−−−−−→ B) = P(L
∐

i∈[k] piτ−−−−−−→ B)/(1 − P(L
∐

i∈[k] piτ−−−−−−→ [L]E))

Definition 3 (q-transition [8]). A q-transition from A to B with regard to E
consists of a regular ε-tree tAE of A with regard to E and for every leaf L of tAE , a

collective silent transition L

∐
i∈[k] piτ−−−−−−→

∐
i∈[k] Li such that PE(L

∐
i∈[k] piτ−−−−−−→ B) =

q. We use A �E
q−→ B to mean there is a q-transition from A to B with regard to

the relation E.

Intuitively q-transition characterizes that after some state-preserving silent
transitions, random choices with total conditional probability q are performed
and the resulting processes should be in the same equivalence class.

Definition 4. [8] An equivalence E on P is a branching bisimulation if (1, 2)
are valid.

1. If BEA �E
l−→ C ∈ P/E such that l �= τ ∨ C �= [A]E , then B �E

l−→ C.
2. If BEA �E

q−→ C ∈ P/E such that C �= [A]E , then B �E
q−→ C.

Finally we can define the equality on PRCCSfs
. It is the largest branching

bisimulation on PRCCSfs
, denoted by �RCCSfs

. Sometimes we will use � instead
of �RCCSfs

for simplicity when its meaning is clear from the context.
The following proposition is a special case of the Theorem 17 in [8]. Here we

present it without proof.

Proposition 2. The equality �RCCSfs
is a congruence.

3 Equivalence Checking Algorithm

Equivalence checking is one of the key problems in verification. It gives the
answer whether two systems are related by a given equivalent relation. As far as
branching bisimulation is concerned, some representative includes [7,16]. Mean-
while, to the probabilistic process calculus model, there are also some interesting
work such as [3,23].

Here we develop an algorithm to decide the equivalence relation �RCCSfs

for RCCSfs processes. Recall that for a given random process A, we use RA

to denote the set of all processes reachable from A. In Proposition 1, we have
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already known that this set is finite, here we will further show that it can be
constructed in polynomial time with respect to the length of the given process.
Pseudocode of our algorithm is given in Algorithm 1.

Algorithm 1. Compute RA

Input: A ∈ PRCCSfs

Output: RA

1: RA := ∅, R′ := {A}
2: while R′ �= ∅ do
3: Choose a process B from R′, R′ := R′ − {B}, RA := RA ∪ {B}
4: if B =

∑
i∈I αi.Ti then

5: R′ := R′ ∪ {Ti : i ∈ I} \ RA

6: else if B =
⊕

i∈I piτ.Ti then
7: R′ := R′ ∪ {Ti : i ∈ I} \ RA

8: else if B = μX.T then
9: R′ := R′ ∪ {T{μX.T/X}} \ RA

10: return RA

For a better understanding of the algorithm, we give one simple example
here.

Example 1. Let H = μX.( 12τ.(a + τ.X) ⊕ 1
2τ.(b + τ.X)), then Algorithm 1 will

return

RH =
{

H,
1
2
τ.(a + τ.H) ⊕ 1

2
τ.(b + τ.H), a + τ.H, b + τ.H,0

}
.

As usual, a partition of process set P is a collection of X containing pairwise
disjoint subsets of P such that each element A ∈ P is contained in some C ∈ X .
The equivalence class containing A is denoted by [A]X . Let EX be the equivalence
relation induced by the partition X . Given two partitions X1 and X2 of the same
set. We say X1 is coarser than X2 (or equivalently X2 is finer than X1) if every
element in X2 is a subset of some element in X1.

Next we propose a technical definition which is closely related to the concep-
tion of ε-tree given in Definition 1.

Definition 5. The ε-graph of A with regard to an equivalence relation E is a
weighted directed graph, denoted by GA

E . GA
E is defined by merging nodes of the

same name from an ε-tree tAE into one node. A vertex in GA
E is called a sink

node if its out degree is 0. Let sn(GA
E ) be the set of all sink nodes of GA

E .

For given process A and E , though there could be infinitely many different
ε-trees, the number of all possible ε-graphs of A with regard to E is finite.

Proposition 3. Let P be a process set and E be an equivalence relation. For a
process A ∈ P, and a process set P ′ ⊆ P, there exists a regular ε-tree tAE with
leaf nodes set P ′ (all of the same name) if and only if there exists an ε-graph
GA

E with a sink node named P ′.
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By Proposition 3, the transformation from ε-tree to ε-graph will not affect the
bisimilarity relation. Yet ε-graph is technically more convenient for presenting
our equivalence checking algorithm.

We put an example here to explain the difference between ε-tree and ε-graph.

Example 2. For the process H in Example 1, a branching bisimulation for PH is
the equivalence E rendering the truth that [H]E = [a + τ.H]E = [b + τ.H]E . For
the ε-tree in Fig. 1(a), the corresponding ε-graph has a sink node b + τ.H. For
the second one in Fig. 1(b) the sink node is a + τ.H. For the ε-tree in Fig. 1(c),
there does not exist a visible action that all leaves can immediately do, and there
does not exist a sink node for the ε-graph.

Fig. 1. ε-trees and corresponding ε-graphs

Here we will introduce one more convention for the description of our algo-
rithm. We use the symbol ϕ̂τ to represent any pτ where p ∈ (0, 1]. In other words,
using ϕ̂τ means we are talking about a probabilistic action without specifying
the concrete probability value.

Definition 6. Let X be a partition of process set P. A splitter of a partition X
is a triple (C1, l, C2) consisting of C1, C2 ∈ X and an action l ∈ Actd ∪{ϕ̂τ}. One
of the following statements is valid:

1. If l ∈ Actd, and C1 �= C2 when l = τ , then there exist some A,A′ ∈ C1,
such that for exactly one of A,A′, there is an ε-graph GA

X (GA′
X resp.), all of

sn(GA
X ) (sn(GA′

X ) resp.) can do an immediate l action to C2.
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2. If l = ϕ̂τ , and C1 �= C2, then there exist A,A′ ∈ C1 and q ∈ (0, 1], such
that for exactly one of A,A′, there is an ε-graph GA

X (GA′
X resp.), for any

T ∈ sn(GA
X ) (sn(GA′

X ) resp.), PEX (T
∐

i∈[k] piτ−−−−−−→ C2) = q.

Intuitively speaking, our equivalence checking strategy starts with a finite
set which contains all reachable states for a pair of processes (the coarsest par-
tition). Keep refining the current sets into finer ones according to their one-step
difference until no further refinement is possible (the finest partition), where
states of the same set are equivalent to each other.

In detail, to refine the partition X , according to Definition 6, there are two
cases to be considered:

1. If X has a splitter (C1, ϕ̂τ, C2).
Let tn(P,X ) ⊆ P be the set composed of all processes that can perform
probabilistic τ step into a different class with nonzero probability. Firstly,
we split C1 ∩ tn(P,X ) into C1 ∩ tn(P,X )/ =p, where A =p A′ iff

PX (A
∐

i∈[k] piτ−−−−−−→ C2) = PX (A′
∐

i∈[k] piτ−−−−−−→ C2). Then, an equivalent class
B ∈ C1 ∩ tn(P,X )/ =p is enriched with process B ∈ C1 \ tn(P,X ) which
satisfies (denoted as Δ) :
(a) There exists an ε-graph GB

X with sn(GB
X ) ⊆ B.

(b) For any other B′ ∈ C1 ∩ tn(P,X )/ =p, there does not exist an ε-graph
GB

X with sn(GB
X ) ⊆ B′.

Let B def= B ∪ {B : B ∈ C1, B satisfies Δ} be the closure of B. We put the
remaining processes into
Res(C1)

def= {C ∈ C1 : C does not satisfies Δ for any B ∈ C1 ∩ tn(P,X )/ =p}.
Formally, the strategy we used for refining X via a splitter (C1, pτ, C2) is:

Refine(X , (C1, τ, C2))
def=(X \ {C1}) ∪ {B : B ∈ C1 ∩ tn(P,X )/ =p}

∪ ({Res(C1)} \ {∅}).

2. If X has a splitter (C1, α, C2), α ∈ Actd, and C1 �= C2 when α = τ .
Let D def= {B ∈ C1 : there exists an ε-graph GB

X , all of sn(GB
X ) can do an

immediate α action to C2}. We can define the method for refining X via a
splitter (C1, α, C2):

Refine(X , (C1, α, C2))
def= (X \ {C1}) ∪ D ∪ (C1 \ D).

Note that for every partition X which is coarser than P/ � and every
nonempty splitter (C1, l, C2) of X , the partition Refine(X , (C1, l, C2)) is no finer
than P/ � while strictly finer than X . If there is no splitter for X (i.e., if neither
of the above two cases applies), then through proof by contradiction, it can be
easily concluded that X = P/ �. This analysis turns out to be the proof of the
following proposition.

Proposition 4. Let X be a partition of process set P. If X cannot be refined
anymore, then X = P/ �.
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This justifies the correctness of Algorithm 2.

Algorithm 2. Equivalence Checking Algorithm
Input: Process A , B
Output: Is A � B?
1: Compute R := RA ∪ RB

2: X := {R}
3: while X contains a splitter (C1, l, C2) do
4: X := Refine(X , (C1, l, C2))

5: if [A]X = [B]X then
6: return true
7: else
8: return false

Theorem 1. �RCCSfs
can be decided in polynomial time.

Proof. There exists a constant c, such that the numbers of elements in R is
bounded by c · (|A|+ |B|) and for process E ∈ R, |E| < c · (|A|+ |B|). The while
loop of line 3–4 can be repeated at most c · (|A| + |B|) times. For each l and C2,
we can construct the process set S = {A | A ∈ C1, A

l−→ C2} in O((|A| + |B|)3)
time and then decide the condition in line 3 by searching for an ε-graph with
sink nodes in S. It can be done by depth first search in O((|A| + |B|)3) time.
Overall the algorithm will terminate in O((|A| + |B|)4) time.

4 Axiomatizations

4.1 Discussion of the Axioms

In the original CCS model, a complete axiomatization for branching bisimula-
tion congruence of finite process will first convert any expression into a strongly
guarded one. If two strongly guarded expressions are branching bisimilar, they
can be proved to be equal in axiomatic system [10]. However, in probabilistic
model, there exist some expressions that cannot be transformed to a strongly

guarded one, e.g., μX(τ.(
1
2
τ.X ⊕ 1

2
τ.b) + a). It means that a τ -loop containing

probabilistic τ may be not state-preserving under �. We will define probabilis-
tically guarded. Intuitively X is probabilistically guarded in T if T can not do
some τ actions to X with probability 1.

Definition 7. The variable X is probabilistically guarded in T if at least one of
the following statements is true:

– There is no free occurrence of X in T , or every free occurrence of X in T
occurs within some subexpression a.F .

– If T ∈ Td, then for any term T ′ such that T
τ−→ T ′, X is probabilistically

guarded in T ′.
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– If T ∈ Tp, then there exists a term T ′ such that T
pτ−→ T ′, X is probabilistically

guarded in T ′.

Otherwise X is probabilistically unguarded in T .

Example 3. X is probabilistically guarded in
1
2
τ.(

1
2
τ.a ⊕ 1

2
τ.X) ⊕ 1

2
τ.(

1
2
τ.X ⊕

1
2
τ.X). X is probabilistically unguarded in a.X + τ.X.

If for every occurrence of μX.T in E, X is probabilistically guarded in T , we
call process E is probabilistically guarded. Let Pg

RCCSfs
be the set of probabilis-

tically guarded processes.
The axioms that characterize the equivalence relation given in Sect. 2.2 are

listed below. We will prove that this set of axioms is sound and complete for the
relation �RCCSfs

.
E1 T = T

E2 if S = T then T = S

E3 if S = T and T = R then S = R

E4 if Si = Ti for each i ∈ I then
∑

i∈I αi.Si =
∑

i∈I αi.Ti

E5 if Si = Ti for each i ∈ I and
∑

i∈I pi = 1, then
⊕

i∈I piτ.Si =
⊕

i∈I piτi.Ti

E6 if S = T then μX.S = μX.T

A1
⊕

i∈I piτ.Si ⊕ pτ.S ⊕ qτ.S =
⊕

i∈I piτ.Si ⊕ (p + q)τ.S, p + q < 1

A2 pτ.S ⊕ qτ.S = τ.S

B1
(∑

i∈I′⊆I αi.Si

)
+ τ.(

∑
i∈I αi.Si) =

∑
i∈I αi.Si

B2 if
p1

q1
= · · · = pi

qi
< 1 and

∑
i∈I qi = 1,

then
⊕

i∈I piτ.Si ⊕ pτ.(
⊕

i∈I qiτ.Si) =
⊕

i∈I qiτ.Si, p = 1 − ∑
i∈I pi

R1 μX.T = T{μX.T/X}
R2 if S = T{S/X} then S = μX.T , provided X is probabilistically guarded in T

R3 μX.(τ.X +
∑

i∈I αi.Ti) = μX(
∑

i∈I αi.Ti)

R4 μX.(τ.(τ.S +
∑

i∈I αi.Ti) +
∑

j∈J βj .Rj) = μX(τ.S +
∑

i∈I αi.Ti +
∑

j∈J βj .Rj),

provided X is probabilistically unguarded in S

One writes A � E = F , with A a list of axiom names, if the equation E = F
is derivable from the axioms in A. In this paper, we take the convention that
E1−6 and A1−2 are always in A.

Comparing to the earlier work on axiomatization for probabilistic bisim-
ulation [2,4,6,13,17,24], B2 highlights the nucleus of the model independent
approach for random process model. That is, instead of the absolute probability
value (or probability distribution), we use the weighted probability in [8], which
basically characterizes the conditional probability of transferring from one state
to another.
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Fig. 2. State-preserving τ and pτ actions

Axioms B1, B2 are both motivated by the axiom B in [10]. B1 modifies B in
two aspects: Firstly, it does not use the heading external action, as the grammar
ensures the terms are weak guarded; Secondly, it uses summation of a set of
terms rather than binary summation. The intuition of axiom B1 is showed in
Fig. 2(a) [12]. The τ action E1

τ−→ E2 is state-preserving if process E2 can do any
actions E1 can do. B2 is a random extension of B1. The intuition of axiom B2
is showed in Fig. 2(b). The probabilistic τ action F1

pτ−→ F2 is state-preserving if
process F2 can do exactly F1 can do with the same weighted probability(

pi

qi
is a

constant value for i ∈ {1, 2, 3}).
The presentation of our work on soundness and completeness follows a similar

strategy as in [10]. One can refer to van Glabbeek’s paper for a comparison.

4.2 Soundness

The soundness of E1−6 has been validated by Proposition 2. The soundness
of A1−2, B1 and R3 can be easily shown by the definition of the equivalence
relation. The soundness of R1 follows from the fact that μX.T

α−→ F ⇐⇒
T{μX.T/X} α−→ F . The soundness of the remaining axioms are given below.

Proposition 5 (Soundness of B2). If
p1
q1

= · · · =
pi

qi
< 1 and

∑
i∈I qi = 1,

then
⊕

i∈I piτ.Ei ⊕ pτ.(
⊕

i∈I qiτ.Ei) �
⊕

i∈I qiτ.Ei, p = 1 −
∑

i∈I pi.

Proof. Let F1 =
⊕

i∈I qiτ.Ei and F2 =
⊕

i∈I piτ.Ei ⊕ pτ.(
⊕

i∈I qiτ.Ei). We
consider the following two cases:

– ∀i ∈ I, Ei � F1.
For every ε-tree t

Fj	 , j ∈ {1, 2}, we can construct an ε-tree t
F3−j	 with the

same set of leaf nodes of t
Fj	 . Thus F1 � F2.

– ∃i ∈ I, Ei �� F1.
Let I ′ ⊆ I be the set of indices satisfying Ei′ �� F1, i′ ∈ I ′. Let ri′ =

qi′∑
i′∈I′ qi′

, then Fj �E
ri′−−→ [Ei′ ]	 for j ∈ {1, 2}.
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Definition 8. A branching bisimulation up to � is a symmetric relation R ⊆
PRCCSfs

× PRCCSfs
such that

– if ERF and E �	
l−→ B1 such that l �= τ ∨B1 �= [E]	, then there exists E′, F ′

such that E′ ∈ B1 ∧ F ′ ∈ B2 ∧ F �	
l−→ B2 ∧ (E′, F ′) ∈ R.

– if ERF and E �	
q−→ B1 such that B1 �= [E]	, then there exists E′, F ′ such

that E′ ∈ B1 ∧ F ′ ∈ B2 ∧ F �	
q−→ B2 ∧ (E′, F ′) ∈ R.

Proposition 6. If R is a branching bisimulation up to � and ERF , then
E � F .

Proposition 7. Variable X is probabilistically guarded in a term T ∈ TRCCSfs
.

If there is an l-transition or q-transition from T{F/X} to B, then there is a
process T ′{F/X} ∈ B such that T ′ is reachable from T .

Proof. Induction on the structure of T .

Proposition 8 (Soundness of R2). If F � S{F/X}, then F � μX.S, pro-
vided X is probabilistically guarded in S.

Proof. Consider the following relation

R =
{(

T{F/Y }, T{μX.S/Y }
) ∣∣∣ fv(T ) = {Y }

}
.

Then (F, μX.S) ∈ R. By Proposition 6, it suffices to prove that the symmetric
closure of R is a branching bisimulation up to �.

– If T{F/Y } �	
l−→ B1 such that l �= τ ∨ B1 �= [T{F/Y }]	.

Consider the ε-tree t
T{F/Y }
	 , we can construct an ε-tree t

T{μX.S/Y }
	 from

t
T{F/Y }
	 by recursively replace the subtree from node F with an ε-tree

t
S{F/X}
	 .

If there is a process E′ = T ′{F/Y } ∈ B1 such that T ′ is reachable from T ,
then E′RF ′ = T ′{μX.S/Y } ∈ B2 and T{μX.S/Y } �	

l−→ B2.
Otherwise, every branch of t

T{F/Y }
	 steps into F . Let E′ ∈ B1, E′ is reach-

able from F . Since F � S{F/X}, and X is probabilistically guarded in S,
by Proposition 7, there is a process E′′{F/X} � E′ where E′′ is reach-
able from S. What’s more, there is a process F ′ = E′′{μX.S/X} ∈ B2 and
T{μX.S/Y } �	

l−→ B2. Then we have

(E′′{F/X}, F ′) = (E′′{Y/X}{F/Y }, E′′{μX.Y/X}{μX.S/Y }) ∈ R

– If T{F/Y } �	
q−→ B1 such that B1 �= [T{F/Y }]	.

Similar with the case of l-transition.
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Proposition 9 (Soundness of R4). μX.(τ.(τ.S +
∑

i∈I αi.Ti) +
∑

j∈J βj .Rj)
� μX(τ.S +

∑
i∈I αi.Ti +

∑
j∈J βj .Rj), provided X is probabilistically unguarded

in term E.

Proof. Let
A1 = μX.(τ.(τ.S +

∑

i∈I

αi.Ti) +
∑

j∈J

βj .Rj)

A2 = τ.S{A1/X} +
∑

i∈I

αi.Ti{A1/X}

B1 = μX(τ.S +
∑

i∈I

αi.Ti +
∑

j∈J

βj .Rj)

First, we show that A1 � A2. It is obvious that A1 can simulate A2. For
the other direction, since X is probabilistically unguarded in S, actions li ∈
{τ} ∪ {pτ | 0 < p < 1} in A2

τ−→ S{A1/X} l1−→ S1{A1/X} l2−→ . . .
lm−→ A1, can

be proved state-preserving. We can construct an ε-tree tA2	 with every branch
stepping into A1. Thus for every tA1	 , there is an ε-tree tA2	 with the same set of
leaf nodes.

With the fact A1
τ−→ A2 is state-preserving, A1 can simulate B1. For the

other direction, we will construct an ε-tree tB1	 by a given tA1	 . tB1	 does nothing
if A1

τ−→ A2 in tA1	 , and follows tA1	 in other cases. It can be seen that tA1	 and
tB1	 have the same set of leaf nodes.

Corollary 1 (Soundness). For E, F ∈ PRCCSfs
, if B1−2, R1−4 � E = F ,

then E � F .

4.3 Completeness

By induction on the structure of TRCCSfs
, we can prove that:

Lemma 1. For a term T ∈ TRCCSfs
,

– if T
X−→ 0, then � T = X;

– if T ∈ Td, then � T =
∑

i∈I{αi.Ti|T αi−→ Ti};
– if T ∈ Tp, then � T =

⊕
i∈I{piτ.Ti|T

piτ−−→ Ti}.

Definition 9. A recursive specification S is a set of equations {X = SX |X ∈
VS} with VS being a variable set. Process E A-provably satisfies the recursive
specification S in the variable X0 ∈ VS if there are processes EX for X ∈ VS with
E = EX0 , such that for X ∈ VS

A � EX = SX{EY /Y }Y ∈VS

Let S be a specification, and X,Y ∈ VS define X >u Y if Y occurs free and
probabilistically unguarded in EX . S is called guarded if >u is well-founded on
VS.
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Proposition 10 (Unique Solutions). If S is a finite guarded recursive speci-
fication and X0 ∈ VS, then there is a process E which R1-provably satisfies S in
X0. Moreover if there are two such processes E and F , then R2 � E = F .

Proof. By induction on the number of equations of S as in [22].

Proposition 11. Let E0, F0 ∈ Pg
RCCSfs

. If E0 � F0, then there is a finite
guarded recursive specification S provably satisfied in the same variable X0 by
both E0 and F0.

Proof. Take a fresh set of variables VS = {XEF |E ∈ PE0 , F ∈ PF0 , E � F}.
X0 = XE0F0 . Now for XEF ∈ VS, S contains the following equations:

1. If E ∈ Tp, and for every E′ such that E
pτ−→ E′, E′ � E, then XEF =⊕

{pτ.XE′F |E pτ−→ E′}.
2. If condition in case 1 is not satisfied, F ∈ Tp, and for every F ′ such that

F
pτ−→ F ′, F ′ � F , then XEF =

⊕
{pτ.XEF ′ |F pτ−→ F ′}.

3. If conditions in case 1 and 2 are not satisfied, and E ∈ Tp, F ∈ Tp, then
for every Bi such that E �	

q−→ Bi, F �	
q−→ Bi, choose a pair of processes

Ei, Fi ∈ Bi, XEF =
⊕

Bi
{qτ.XEiFi

}.
4. If E ∈ Td, F ∈ Td then XEF =

∑
{α.XE′F ′ |E α−→ E′, F α−→ F ′, E′ � F ′} +∑

{τ.XE′F |E τ−→ E′, E′ � F} +
∑

{τ.XEF ′ |F τ−→ F ′, E � F ′}.
5. Otherwise, XEF =

∑
{τ.XE′F |E τ−→ E′, E′ � F} +

∑
{τ.XEF ′ |F τ−→ F ′, E �

F ′}.

The corresponding process of variable XEF is E. We will prove B1−2, R1−2 �
E = SXEF

{E′/XE′F ′}XE′F ′∈VS
. Then E0 is B1−2, R1−2 provably satisfying S

in X0. The same statement for F0 then follows by symmetry.
The case 1, 2, 5 can be proved directly by Lemma 1.
Case 3 is the different part with the proof in [10]. In case 3, E ∈ Tp, F ∈ Tp,

and both of E and F can directly do some probabilistic τ action to a different
equivalence class. It will be sufficient to prove the following claim:

Claim. For G ∈ Pg
RCCSfs

, if G �	
qi−→ Ei for i ∈ I, then B1−2, R1−2 � G =⊕

i∈I qiτ.Ei.

Proof. Define the lexicographic ordering (m,n) < (m′, n′) as m < m′ or (m = m′

and n < n′). We also define (m1, n1) + (m2, n2) = (m1 + m2, n1 + n2) and
(m,n)1 = m, (m,n)2 = n.

Define the following rank function r : Pg
RCCSfs

→ N × N:

r(0) = (0, 0)

r(
⊕

i∈I

piτ.Ei) = (0, 1) + max
i∈I

{r(Ei)}

r(
∑

i∈I

αi.Ei) = max
{

{(0, 1) + r(Ei)|αi = τ} ∪ {(0, 1)|αi �= τ}
}

r(μX.T ) = (1 + r(T{0/X})1, 0)
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By induction on r(G), we can formally prove case 3:

– If r(G) = (0, 1), and G �	
qi−→ Ei for i ∈ I.

Then G must be of the form
⊕

i∈I{
⊕

j∈Ji
pjτ.Ei|

∑
j∈Ji

pj = qi}. Then
(A1) � G =

⊕
i∈I qiτ.Ei.

– If r(G) = (m,n) > (0, 1), and G �	
qi−→ Ei for i ∈ I.

• G =
∑

j∈J αj .Gj . For every j ∈ J , αj = τ and G � Gj �	
qi−→ Ei. And

r(Gj) < r(G).
By induction hypothesis, B1−2, R1−2 � Gj =

⊕
i∈I qiτ.Ei for every

j ∈ J . We can conclude that B1−2, R1−2 � G =
⊕

i∈I qiτ.Ei for every
j ∈ J .

• G =
⊕

j∈J pjτ.Gj . If there exists some j ∈ J , Gj �� G, by Lemma 1,

� G =
⊕

i∈I{piτ.Ei|
pi

qi
= c < 1, G

piτ−−→ Ei �� G} ⊕
⊕

j∈J−I{pjτ.Gj :

G
pjτ−−→ Gj � G}. For every j ∈ J − I, r(Gj) < r(G). By induction

hypothesis, B1, B2, R2 � Gj =
⊕

i∈I qiτ.Ei for every j ∈ J − I, then
B2(A1) � G =

⊕
i∈I qiτ.Ei.

If for every j ∈ J , Gj � G. Then for every j ∈ J , Gj �	
qi−→ Ei and

r(Gj) < r(G). By induction hypothesis, B1−2, R1−2 � Gj =
⊕

i∈I qiτ.Ei,
then (A1) � G =

⊕
i∈I qiτ.Ei.

• G = μX.T

T{μX.T/X} �	
qi−→ Ei, then T{

⊕
i∈I qiτ.Ei/X} �	

qi−→ Ei. Since
r(μX.T )1 = 1 + r(T{

⊕
i∈I qiτ.Ei/X})1, r(μX.T ) > r(T{

⊕
i∈I qiτ.Ei/

X}).
By induction hypothesis, � T{

⊕
i∈I qiτ.Ei/X} =

⊕
i∈I qiτ.Ei , R2 �

μX.T =
⊕

i∈I qiτ.Ei.

In case 4, E ∈ Td and F ∈ Td. We need to prove

B1 � E =
∑

{α.E′|E α−→ E′, F α−→ F ′, E′ � F ′}

+
∑

{τ.E′|E τ−→ E′, E′ � F} +
∑

{τ.E|F τ−→ F ′, E � F ′}
(4)

By Lemma 1, � E =
∑

i∈I{αi.Ei : E
αi−→ Ei}, then

B1 � E =
∑

{α.E′|E α−→ E′, F α−→ F ′, E′ � F ′}

+
∑

{τ.E′|E τ−→ E′, E′ � F} + τ.E
(5)

If there exists a process F ′ with F
τ−→ F ′ � E, (4) and (5) are equal directly.

Otherwise, every action from E should be bisimulated by F directly, which means
the set {αi.Ei : E

αi−→ Ei} equals to the set {α.E′|E α−→ E′, F α−→ F ′, E′ �
F ′} ∪ {τ.E′|E τ−→ E′, E′ � F}.

Corollary 2 (Completeness for probabilistically guarded processes).
For E, F ∈ Pg

RCCSfs
, if E � F then B1−2, R1−2 � E = F .
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Proposition 12. For E ∈ PRCCSfs
, there exists a probabilistically guarded pro-

cess E′ with R1, 3, 4 � E = E′.

Proof. Induction on the depth of nesting of recursions in μX.T [10].

Corollary 3 (Completeness for all processes). For E,F ∈ PRCCSfs
, if E �

F then B1−2, R1−4 � E = F .

5 Concluding Remarks

We have studied algorithm and axiomatization of the branching bisimulation
relations for randomized CCS model. We give a polynomial time algorithm for
equivalence checking and show that our axiom system is sound and complete.
These two results, besides their value to the randomized CCS model itself, can
be generalized to other randomized finite state models. The reason is that the
essence of our work is dealing with probabilistic actions, which however, is model
independent.

We are currently planning to extend our axiomatization to the divergence-
sensing branching bisimulation and other equivalences such as testing equiva-
lence. Another interesting topic is to implement the ε-tree technique on other
classical probabilistic process calculi. We believe this is an expecting topic as it
can be regarded as an extension and application of the philosophy of the model
independent method.
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